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SUPPLEMENTARY INFORMATION 

SUPPLEMENTARY NOTE 1 

Proteomic analysis of Tupanvirus particles 

Proteomic analysis of Tupanvirus soda lake particles revealed 127 proteins, nearly half 

(32/127 = 25.1%) of which are unknown and eight of which are encoded by ORFans 

(11/87 = 12.6%). Besides the expected major structural components [major capsid 

protein (L679) and core protein (L614)], transcription components constitute the largest 

functional category associated to the viral particle (13 gene products, including subunits 

of DNA-dependent RNA polymerase, RNA helicases, and mRNA capping enzyme). 

Moreover, other functional categories were detected in Tupanvirus particles, including 

protein/lipid modification (14), oxidative pathways (6), DNA topology and repair (3), 

particle structure (4), and others (87). 59 and 25 out of 127 TPV virion-associated 

proteins are shared with mimivirus (APMV) and Cafeteria roenbergensis virus 

respectivelly, out spanning all functional categories analyzed (Supplementary Data 2).  

 

18S rRNA intronic sequence within Mimiviridae and Tupanvirus  

The study of 18S rRNA sequences in tupanviruses showed that both copies are located 

in an intergenic region (Fig. 6; Supplementary Fig. 6A,B). The genomic environment 

analysis revealed the presence of many hypothetical proteins and ORFans next to the 

two copies and a tRNA island, composed of seven tRNAs, 15 kbp away from the core 

sequence of copy 1 (Supplementary Fig. 6A,B). Best hit analysis showed that the first 

100 sequences, for both copies, belong mainly to the intronic regions of 18S sequences 

from different organisms such as fungi, amoebas and algae (Supplementary Fig. 6C,D). 

The presence of the 18S rRNA intronic sequence was also observed in members of 

lineages A, B and C of the Mimiviridae family (Fig. 6) Lineages A and B presented just 
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one copy which is located in an intronic region next to a self-splicing group I intron 

endonuclease. Lineage C presented two copies of the 18S rRNA sequence: copy 1 was 

disposed in a similar pattern of the copies presented in both tupanviruses (in intergenic 

regions) and copy 2 showed a most similar pattern to the unique copies of lineages B 

and C (in an intronic region also next to a self-splicing group I intron endonuclease) 

(Fig. 6 A-E). Phylogenetic analyses suggested that 18S rRNA copies 1 and 2 of 

mimiviruses lineage C had separate and different origins. However, Tupanvirus 18S 

rRNA copy 1 and 2 seem to be related to mimiviruses lineage A and B (single copy) 

and fungi mitochondrial 18S rRNA intronic region (Fig. 6F). We also observed the 

presence of three or four copies of the 18S-like sequences in some Chlorella virus, 

which were all phylogenetically inter-related (Fig. 6F). Analyses involving FISH and 

qPCR of the intronic 18S ribosomal region in tupanvirus soda lake demonstrated that, 

although these 18S rRNA copies are located in intergenic regions, they are highly 

expressed during the entire infection, especially in intermediate and later phases (6 and 

12 hours post infection) (Supplementay Fig. 8). 

 

Profile of infectiveness of Tupanvirus 

Tupanvirus was first isolated in both Acanthamoeba castellanii and Vermamoeba 

vermiformis, suggesting a broader host-range compared to other previously described 

amoebal giant viruses. In light of this, we tested the infectiveness of the new isolate on a 

large panel of protozoa. Four distinct infectiveness profiles were observed 

(Supplementary Table 1). Cytopathic effect (CPE), increase of viral titer, and genome 

replication were observed in A. castellanii, A. polyphaga, A. sp E4, A. griffini, V. 

vermiformis, Dysctiostelium discoideum, and Willartia magna, characterizing a 

productive cycle wherein these hosts were permissive to Tupanvirus. An abortive cycle 
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was observed in Acanthamoeba sp michelline and A. royreba, wherein CPE and 

Tupanvirus genome replication were observed, but there was no particle formation since 

the viral titer did not increase. Trichomonas tenax were completely refractory to 

Tupanvirus, since CPE, genome replication and increase of viral titer were not 

observed. The fourth profile was observed in RAW247, THP-1 cells and in 

Tetrahymena hyperangularis, a ravenous free-living protist, wherein Tupanvirus was 

able to induce a cytopathic effect, but neither an increase of viral titer nor genome 

replication were observed, thus we concluded that TPV was toxic to the susceptible cell 

- an unprecedented profile among amoebal giant viruses. 

 

Tupanvirus modulates a non-host organism 

Tetrahymena sp was susceptible to Tupanvirus, which caused several effects (Fig. 7G; 

Fig. 8); however it could not replicate within the protist. In light of this, we 

hypothesized that the reduction of physiological activity of a (non-host) predator could 

increase the virus’ fitness. We put it to the test by performing in vitro simulations, 

wherein Acanthamoeba castellanii (AC) and Tetrahymena sp cells were put together 

and infected at M.O.I. of 10 (Tupanvirus or APMV), and observed over 12 days. Input 

of fresh medium and permissive host (AC) was done at days four and eight post 

infection. After the input, Tupanvirus reached higher titers while APMV was 

extinguished, since the latter was not able to modulate the predator organism, unlike 

Tupanvirus (Fig. 8N). When we induced a previous ribosomal RNA shutdown in 

Tetrahymena with geneticin, APMV was able to survive until the last day of 

observation, similar to tupanvirus. This indicates that viral particles’ toxicity confers an 

advantage in a habitat of intense competition where giant viruses are abundant (e.g. 

water environment), favoring the encounter between the virus and a permissive host. 
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Altogether, this data suggest that viral particles can act as active “non-alive” players 

favoring viral progeny maintenance, in a distinct way of their canonical role of 

transmitting genetic information. Considering that Tupanvirus is sister group of 

mimivirus, such modulation mechanism could be an ancient inheritance from an 

ancestor of Mimivirus or Mimiviridae. This new mechanism demonstrates that selective 

pressures over virion content go beyond the metastability properties in early steps of 

host infection, and can act as unexpected players to protect the rest of the viral progeny 

against predation. 

 

rRNA shutdown does not seems to be related to ribophagy 

The cytotoxic phenotype caused by Tupanvirus in host (A. castellanii) and non-host 

cells (Tetrahymena) is a circumstance never previously described and seems to be 

related to the shutting down of host ribosomal amounts (Fig. 7C; Fig. 8B,C,D,K,L). In a 

first moment, we believed that the autophagy might be related to Tupanvirus infection. 

In order to corroborate or not this hypothesis, we developed other several experiments 

involving the use of acidification inhibitors (chloroquine and bafilomycin A), the 

observation of acidification of infected cells, as well as the silencing of the gene that 

encodes an autophagy-related protein, Atg8-2. The treatment of amoebas with 

chloroquine (a lysosomotropic agent that accumulates inside the acidic parts of the cell, 

including endosomes and lysosomes, preventing acidification and, consequently, the 

fusion of endosomes and lysosomes) or bafilomycin A (a vacuolar H+ ATPase inhibitor 

that acts in the late phase of autophagy) did not prevented the occurrence of the 

ribosomal shutdown caused by tupanvirus infection, suggesting that this phenomenon is 

not dependent of the autophagosomes formation, a hallmark of ribophagy (Fig. 7C,D; 

Supplementary Fig. 9). In order to confirm this first experiment, we also opted to do the 
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silencing (siRNA) of Atg8-2, that is one of the ubiquitin-like proteins required for 

autophagosome formation, representing thus a cell marker related to ribophagy. 

Curiously, the gene silencing also does not prevent viral induced ribosomal shutdown in 

Acanthamoeba castellanii, corroborating the results observed with the inhibitors 

treatment (Fig. 7C,D). We also checked the pH of cells infected by tupanvirus or 

mimivirus, in presence or absence of bafilomycin A. Tupanvirus, in contrast to 

mimivirus, induces a strong acidification of whole amoebal cytoplasm at the time of 9 

hours after infection (Fig. 7B; Suppementay Fig.9A,B). In mimivirus-infected amoebas 

and non-infected amoebas, it was possible visualize only localized acidic vacuoles, but 

in a scale quite smaller than that observed to tupanvirus infected cells (Fig 7B; 

Suppementay Fig.9A,B). Interestingly, the intense acidification caused by tupanvirus is 

not affected by the bafilomicyn A treatment, suggesting that this decrease in pH could 

be induced by an another acidification mechanisms not related to H+ ATPase pump 

(Fig. 7B; Suppementay Fig.9A,B). Although tupanvirus induces a remarkable 

acidification of host cells concomitantly with the ribosomal RNA shutdown, the 

biological meaning of such acidification and its possible relation to ribosomal shutdown 

remain to be investigated. As demonstrated in main data, Tupanvirus (inactivated or 

not) also causes degradation of host (Acanthamoeba castellanii) and non-host 

(Tetrahymena) nucleolus/nucleus (Fig. 7F,G), which may contribute to rRNA 

shutdown, since the nucleolus is important to ribosomal biogenesis. Taken together, 

these results indicate that this cytotoxic phenotype caused by tupanvirus is a mechanism 

not-related to the canonical ribophagy/autophagy process. 
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1: Tupanvirus soda lake cycle in A. castellanii observed by 

immunofluorescence. Cells were infected at a multiplicity of infection of 1 and 

observed at different time points post-infection. In green, viral particles detected by 

anti-tupan particle antibody produced in mouse; in red, amoeba cytoskeleton.  H: hours 

post-infection. Scale bar, 10 µm. 
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Supplementary Figure 2: Tupanvirus deep ocean genomic information. (a) 

Rhizome; (b) circular representation of the genome highlighting the translation-related 

factors; and (c) analysis of Tupanvirus deep ocean 70 tRNAs distribution among amino 

acid (aa) categories, isoacceptors and their relation to viral aa usage. Bars represent the 

percentage of use of a given codon (isoacceptor) related to a given aa. Dots above bars 

represent codons in which Tupanvirus deep ocean presents one or more related tRNAs. 

*Ambiguous tRNA – also predicted for pyrrolysine. 
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Supplementary Figure 3: Analysis of 67 tRNA distribution in tupanvirus soda lake 

among amino acid (aa) categories, isoacceptors and their relation to viral aa usage. Bars 

represent the percentage of use of a given codon (isoacceptor) related to a given aa. 

Dots above bars represent codons in which Tupanvirus presents one or more related 

tRNAs. Numbers above the squares represent the percentage of codon occurrence 

covered by tupanvirus tRNA, considering each aa. These numbers determined the 

colours, according to the legend at the bottom right corner of the figure. 
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Supplementary Figure 4: Maximum likelihood phylogenetic trees of the 20 

Tupanvirus aminoacyl tRNA synthetases (aaRS). 
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Supplementary Figure 5: The rhizome of the glutaminyl-tRNA synthetase of 

Tupanvirus soda lake. The sequence of the glutaminyl-tRNA synthetase was split into 

short fragments and blasted against the NR database. Best hit was selected and 

integrated in a circular gene data image. Taxonomic origins are colored in blue for 

eukaryote, green for bacteria and orange for viruses. 
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Supplementary Figure 6: Genomic environment and best-hit analyses of 

Tupanvirus soda lake 18S rRNA intronic regions. Genomic environment of copy 1 

(a) and copy 2 (b). The 100 best hits for copies 1 (c) and 2 (d). 
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Supplementary Figure 7: Networks of translation-related category of genes of 

tupanviruses, Klosneuviruses, other mimiviruses and cell organisms. 
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Supplementary Figure 8: Analysis of Tupanvirus 18S rRNA intronic region (copies 

1 or 2) expression in infected Acanthamoeba castellanii cells at 30 minutes and at 6 

and 12 hours post-infection. Fluorescence in situ hybridization (FISH) (a and b) and 

qPCR (c – copy 1 and d – copy 2). In red, viral 18S rRNA intronic copies; in green 

Acanthamoeba 18S rRNA region (a and b). FISH analysis related to 24 hours post-

infection; copy 1 is also shown in Figure 7a. Scale bar, 10 µm. Error bars (c and d), 

standard deviation. The experiments were performed 3 times independently, with two 

replicates each. 
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Supplementary Figure 9: Acidification of Acanthamoeba castellanii cytoplasm after 

Tupanvirus soda lake and mimivirus infection (9 h.p.i.). (a) Tupanvirus causes 

strong acidification of amoebal cytoplasm even in the presence of bafilomycin A. (b) 

Quantification of the acidification demonstrated in (a). (c-f) Even in the presence of 

chloroquine or bafilomycin A, the rRNA shutdown induced by Tupanvirus is not 

prevented (3 and 9 h.p.i.). (g-j) qPCR results related to the cells infected and treated as 

presented in (c-f). Scale bar, 5 µm. Error bars ( b, g-j), standard deviation. Statistical 

analyses were performed on the data shown in (b) using a t-test based on control groups. 

**:p<0.01; ***:p<0.001. The experiments were performed 3 times independently, with 

two replicates each. 
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SUPPLEMENTARY TABLE 

Supplementary Table 1: Permissiveness profile of Tupanvirus in different cells. 

 

 

 

Tupanvirus profiles of infectiveness in different cells 

CPE: cytopathic effect 

	

Cell CPE Viral titer increasing Viral genome replication Infection profile 

Acanthamoeba castellanii + 3log10, after 24 hours 5 x 3log10, after 24 hours productive 

Acanthamoeba sp E4 + 1log10, after 24 hours 6 x 3log10, after 24 hours productive 

Acanthamoeba sp. 

micheline 

+ No 2 x 1log10, after 24 hours abortive 

Acanthamoeba 

polyphaga 

+ 1log10, after 24 hours 4 x 1log10, after 24 hours productive 

Acanthamoeba royreba + No 2 x 1log10, after 24 hours abortive 

Acanthamoeba griffini + 1,5log10, after 24 hours 7 x 1,5log10, after 24 hours productive 

Vermamoeba vermiformis + 1log10, after 24 hours 6 x 1log10, after 24 hours productive 

Dyctiostelium discoideum + 1log10 after 48 hours 2 x 1log10 after 48 hours productive 

Willartia magna + 0,5log10 after 24 hours 0,8log10 after 24 hours productive 

Tetrahymena 

hyperangularis 

+ No No cytotoxic 

THP-1  + No No cytotoxic 

RAW264.7 + No No cytotoxic 

Trichomonas tenax - No No resistant 


